Привороты Заговоры на... Отвороты

Излучение жизни. Радиоактивность в повседневной жизни. Необходимость классификации радиоактивного излучения

10б класс
Руководитель работы:

Ольга Зариня

доктор психологии, преподаватель спорта

ANNOTATION

Radiation in everyday life. Sergey Radonezhskiy, work conductor Olga Zarinya, Riga Secondary School N54 sport teacher.


Аннотация на английском языке...

ANOTĀCIJA

Radiācija ikdienas dzīvē. Sergejs Radonežskis, darba vadītāja Rīgas 54.vidusskolas sporta pasniedzēja, psiholoģijas doktore Olga Zariņa.

Darbā analizēts - Latvāņu vispārīgais raksturojums. Latvāņu bīstamība. Darba drošība, apkarojot latvāņu audzes. Latvāņu izmantošanas iespējas. Latvāņu ierobežošanas iespējas.

Uzzināt par to, kas ir radiācija, par to bīstamību un izpētīt radiācijas izstarotājus mūsu ārienē.


  1. Iepazīties ar radiācijas vispārējo raksturojumu.

  2. Uzzināt par radiācijas veidiem.

  3. Uzzināt par radiācijas izplatījumu un fizisko būtību.

  4. Analizēt cilvēka apkārtni, meklējot radiācijas izstarojumu
Pētījumā secināts , ka radiācija ir ļoti bīstama lieta. Ikdienas dzīvē mums apkārt ir ļoti daudz radioaktīvo lietu. Tā ir kļuvusi par grūti apkarojamu un bīstamu nezāli, bet pašlaik ir ir kontrolēta.

Atslēgas vārdi: radiācija, starojums, .

Darbs satur 17 lapas, 5 bibliogrāfiskos nosaukumus, 4 pielikumus. Darba praktiskajā daļā veikta aptauja Rīgas 54.vidusskola 10. un 11. klasē. Respondentu skaits ir 56. Darba rezultāti apkopoti, izanalizēti un salīdzināti.

CОДЕРЖАНИЕ

ВВЕДЕНИЕ 5

1. История открытия радиоактивности. 6

1.1. Общее понятие радиоактивности. 6

1.2. История открытия радиоактивности. 6

2. Виды радиоактивного излучения 8

2.1. Необходимость классификации радиоактивного излучения. 8

2.2. Альфа-распад. 8

2.3. Бета-распад. 11

2.4. Другие типы радиоактивного излучения. 12

2.4.2. Открытие позитронного распада. 13

ВЫВОДЫ 15

СПИСОК ЛИТЕРАТУРЫ 16

ПРИЛОЖЕНИЕ 17

ВВЕДЕНИЕ

Тема работы. Радиоактивность в повседневной жизни.

Тема была выбрана , потому что она актуальна сегодня. Очень много радиоактивных предметов существует на планете – буквально всё излучает радиоактивность, поэтому очень важно знать, какие предметы излучают больше радиации, а также необходимо знать меры предосторожности. Радиоактивность имеет свойство накапливаться в человеческом организме, поэтому каждый человек должен быть предупреждён

Цель работы. Ознакомиться с понятием радиоактивности и выявить наиболее опасные излучатели радиоактивности в среде жизни человека.

Задачи.


  1. Ознакомиться с общей характеристикой радиоактивности.

  2. Узнать о видах радиации.

  3. Узнать о распространении радиации и об источниках радиации

  4. Проанализировать окружение человека на наличие радиоактивных излучателей.

Гипотеза. В среде жизни человека очень много радиоактивных излучателей.

Использованные методы. В работе использованы метод сопоставления, метод радиогалактического анализа, спектрального анализа.

Структура работы. Работа состоит из введения, 2 глав, 7 подглав, выводов, списка литературы и 4 приложения.

1. История открытия радиоактивности.

1.1. Общее понятие радиоактивности.

РАДИОАКТИВНОСТЬ – превращение атомных ядер в другие ядра, сопровождающееся испусканием различных частиц и электромагнитного излучения. Отсюда и название явления: на латыни radio – излучаю, activus – действенный. Это слово ввела Мария Кюри (см. РАДИЙ). При распаде нестабильного ядра – радионуклида из него вылетают с большой скоростью одна или несколько частиц высокой энергии. Поток этих частиц называют радиоактивным излучением или попросту радиацией. (1)

1.2. История открытия радиоактивности.

Лучи Рентгена . Открытие радиоактивности было непосредственно связано с открытием Рентгена. Более того , некоторое время думали, что это один и тот же вид излучения. Конец 19 в. вообще был богат на открытие различного рода не известных до того «излучений». В 1880-е английский физик Джозеф Джон Томсон приступил к изучению элементарных носителей отрицательного заряда, в 1891 ирландский физик Джордж Джонстон Стони (1826–1911) назвал эти частицы электронами. Наконец, в декабре Вильгельм Конрад Рентген сообщил об открытии нового вида лучей, которые он назвал Х-лучами. До сих пор в большинстве стран они так и называются, но в Германии и России принято предложение немецкого биолога Рудольфа Альберта фон Кёлликера (1817–1905) называть лучи рентгеновскими. Эти лучи возникают, когда быстро летящие в вакууме электроны (катодные лучи) сталкиваются с препятствием. Было известно, что при попадании катодных лучей на стекло, оно испускает видимый свет – зеленую люминесценцию. Рентген обнаружил, что одновременно от зеленого пятна на стекле исходят какие-то другие невидимые лучи. Это произошло случайно: то в темной комнате светился находящийся неподалеку экран, покрытый тетрацианоплатинатом бария Ba (раньше его называли платиносинеродистым барием). Это вещество дает яркую желто-зеленую люминесценцию под действием ультрафиолетовых, а также катодных лучей. Но катодные лучи на экран не попадали , и более того, когда прибор был закрыт черной бумагой, экран продолжал светиться. Вскоре Рентген обнаружил, что излучение проходит через многие непрозрачные вещества, вызывает почернение фотопластинки, завернутой в черную бумагу или даже помещенной в металлический футляр. Лучи проходили через очень толстую книгу, через еловую доску толщиной 3 см, через алюминиевую пластину толщиной 1,5 см... Рентген понял возможности своего открытия: «Если держать руку между разрядной трубкой и экраном, – писал он, – то видны темные тени костей на фоне более светлых очертаний руки». Это было первое в истории рентгеноскопическое исследование.

Открытие Рентгена мгновенно облетело весь мир и поразило не только специалистов. В канун 1896 в книжном магазине одного немецкого города была выставлена фотография кисти руки. На ней были видны кости живого человека, а на одном из пальцев – обручальное кольцо. Это была снятая в рентгеновских лучах фотография кисти жены Рентгена. Первое сообщение Рентгена О новом роде лучей было опубликовано в «Отчетах Вюрцбургского физико-медицинского общества» 28 декабря оно было немедленно переведено и опубликовано в разных странах, выходящий в Лондоне самый известный научный журнал «Nature» («Природа») опубликовал статью Рентгена 23 января 1896.

Новые лучи стали исследовать во всем мире , только за один год на эту тему было опубликовано свыше тысячи работ. Несложные по конструкции рентгеновские аппараты появились и в госпиталях: медицинское применение новых лучей было очевидным.

Сейчас рентгеновские лучи широко используются (и не только в медицинских целях) во всем мире. (2, 141)


Лучи Беккереля . Открытие Рентгена вскоре привело к не менее выдающемуся открытию. Его сделал в 1896 французский физик Антуан Анри Беккерель. Он был 20 января 1896 на заседании Академии, на котором физик и философ Анри Пуанкаре рассказал об открытии Рентгена и продемонстрировал сделанные уже во Франции рентгеновские снимки руки человека. Пуанкаре не ограничился рассказом о новых лучах. Он высказал предположение, что эти лучи связаны с люминесценцией и, возможно, всегда возникают одновременно с этим видом свечения, так что, вероятно, можно обойтись и без катодных лучей. Свечение веществ под действием ультрафиолета – флуоресценция или фосфоресценция (в 19 в. не было строгого разграничения этих понятий) было знакомо Беккерелю: ею занимались и его отец Александр Эдмонд Беккерель (1820–1891), и дед Антуан Сезар Беккерель (1788–1878) – оба физики; физиком стал и сын Антуана Анри Беккереля – Жак, который «по наследству» принял кафедру физики при парижском Музее естественной истории, эту кафедру Беккерели возглавляли 110 лет, с 1838 по 1948.

2. Виды радиоактивного излучения

2.1. Необходимость классификации радиоактивного излучения.

Когда в руках исследователей появились , в миллионы раз более сильные, чем уран (это были препараты радия, полония, актиния), можно было более подробно ознакомиться со свойствами радиоактивного излучения. В первых исследованиях на эту тему самое активное участие приняли Эрнест Резерфорд супруги Мария и Пьер Кюри, А.Беккерель, многие другие. Прежде всего, была изучена проникающая способность лучей, а также действие на излучение магнитного поля. Оказалось, что излучение неоднородно, а представляет собой смесь «лучей». Пьер Кюри обнаружил, что при действии магнитного поля на излучение радия одни лучи отклоняются, а другие нет. Было известно, что магнитное поле отклоняет только заряженные летящие частицы , причем положительные и отрицательные в разные стороны. По направлению отклонения убедились в том, что отклоняемые b-лучи заряжены отрицательно. Дальнейшие опыты показали, что между катодными и b-лучами нет принципиальной разницы, откуда следовало, что они представляют собой поток электронов.

Отклоняющиеся лучи обладали более сильной способностью проникать через различные материалы, тогда как неотклоняющиеся легко поглощались даже тонкой алюминиевой фольгой – так вело себя, например, излучение нового элемента полония – его излучение не проникало даже сквозь картонные стенки коробки, в которой хранился препарат. (1)

2.2. Альфа-распад.

При использовании более сильных магнитов оказалось, что a-лучи тоже отклоняются, только значительно слабее , чем b-лучи, причем в другую сторону. Отсюда следовало, что они заряжены положительно и имеют значительно бóльшую массу (как потом выяснили, масса a-частиц в 7740 раз больше массы электрона). Впервые это явление обнаружили в 1899 А.Беккерель и Ф.Гизель. В дальнейшем выяснилось, что a-частицы представляют собой ядра атомов гелия (нуклид 4Не) с зарядом +2 и массой 4 у.е. (см. УГЛЕРОДНАЯ ЕДИНИЦА.). Когда же в 1900 французский физик Поль Вийар (1860–1934) исследовал более подробно отклонение a- и b-лучей, он обнаружил в излучении радия и третий вид лучей, не отклоняющихся в самых сильных магнитных полях, это открытие вскоре подтвердил и Беккерель. Этот вид излучения, по аналогии с альфа- и бета-лучами, был назван гамма-лучами, обозначение разных излучений первыми буквами греческого алфавита предложил Резерфорд. Гамма-лучи оказались сходными с лучами Рентгена , т.е. они представляют собой электромагнитное излучение, но с более короткими длинами волн и соответственно с большей энергией. Все эти виды радиации описала М.Кюри (см. РАДИЙ) в своей монографии «Радий и радиоактивность» (опубликована в Париже в 1904, русский перевод – 1905). Вместо магнитного поля для «расщепления» радиации можно использовать электрическое поле, только заряженные частицы в нем будут отклоняться не перпендикулярно силовым линиям, а вдоль них – по направлению к отклоняющим пластинам. Долгое время было неясно, откуда берутся все эти лучи. В течение нескольких десятилетий трудами многих физиков была выяснена природа радиоактивного излучения и его свойства, были открыты новые типы радиоактивности. Альфа-лучи испускают, главным образом, ядра самых тяжелых и потому менее стабильных атомов (в периодической таблице они расположены после свинца). Эти высокоэнергетичные частицы. Обычно наблюдается несколько групп a-частиц, каждая из которых имеет строго определенную энергию. Так, почти все a-частицы, вылетающие из ядер 226Ra, обладают энергией в 4,78 МэВ (мегаэлектрон-вольт) и небольшая доля a-частиц энергией в 4,60 МэВ. Другой изотоп радия – 221Ra испускает четыре группы a-частиц с энергиями 6,76, 6,67, 6,61 и 6,59 МэВ. Это свидетельствует о наличии в ядрах нескольких энергетических уровней, их разность соответствует энергии излучаемых ядром g-квантов. Известны и «чистые» альфа-излучатели (например, 222Rn). По формуле E = mu2/2 можно подсчитать скорость a-частиц с определенной энергией. Например , 1 моль a-частиц с Е = 4,78 МэВ имеет энергию (в единицах СИ) Е = 4,78·106 эВ ґ 96500 Дж/(эВ·моль) = 4,61·1011 Дж/моль и массу m = 0,004 кг/моль, откуда u » 15200 км/с, что в десятки тысяч раз больше скорости пистолетной пули. Альфа-частицы обладают самым сильным ионизирующим действием: сталкиваясь с любыми другими атомами в газе, жидкости или твердом теле, они «обдирают» с них электроны, создавая заряженные частицы. При этом a-частицы очень быстро теряют энергию: они задерживаются даже листом бумаги. В воздухе a-излучение радия проходит всего 3,3 см, a-излучение тория – 2,6 см и т.д. В конечном счете потерявшая кинетическую энергию a-частица захватывает два электрона и превращается в атом гелия. Первый потенциал ионизации атома гелия (He – e ® He+) составляет 24,6 эВ, второй (He+ – e ® He+2) – 54,4 эВ, это намного больше, чем у любых других атомов. При захвате электронов a-частицами выделяется огромная энергия (более 7600 кДж/моль), поэтому ни один атом, кроме атомов самого гелия, не в состоянии удержать свои электроны, если по соседству окажется a-частица. Очень большая кинетическая энергия a-частиц позволяет «увидеть» их невооруженным глазом (или с помощью обычной лупы), впервые это продемонстрировал в 1903 английский физик и химик Уильям Крукс (1832 – 1919. Он приклеил на кончик иглы еле видимую глазом крупинку радиевой соли и укрепил иглу в широкой стеклянной трубке. На одном конце этой трубки, недалеко от кончика иглы, помещалась пластинка, покрытая слоем люминофора (им служил сульфид цинка), а на другом конце было увеличительное стекло. Если в темноте рассматривать люминофор , то видно: все поле зрения усеяно вспыхивающими и сейчас же гаснущими искрами. Каждая искра – это результат удара одной a-частицы. Крукс назвал этот прибор спинтарископом (от греч. spintharis – искра и skopeo – смотрю, наблюдаю). С помощью этого простого метода подсчета a-частиц был выполнен ряд исследований, например, этим способом можно было довольно точно определить постоянную Авогадро. (5, 21)
В ядре протоны и нейтроны удерживаются вместе ядерными силами, Поэтому было непонятно, каким образом альфа-частица, состоящая из двух протонов и двух нейтронов, может покинуть ядро. Ответ дал в 1928 американский физик (эмигрировавший в 1933 из СССР) Джордж (Георгий Антонович) Гамов). По законам квантовой механики a-частицы, как и любые частицы малой массы, обладают волновой природой и потому у них есть некоторая небольшая вероятность оказаться вне ядра, на небольшом (примерно 6·10–12 см) расстоянии от него. Как только это происходит, на частицу начинает действовать с кулоновское отталкивание от очень близко находящегося положительно заряженного ядра. Альфа-распаду подвержены , основном, тяжелые ядра – их известно более 200, a-частицы испускаются большинством изотопов элементов, следующих за висмутом. Известны ти более легкие альфа-излучатели, в основном, это атомы редкоземельных элементов. Но почему из ядра вылетают именно альфа-частицы, а не отдельные протоны? Качественно это объясняется энергетическим выигрышем при a-распаде (a-частицы – ядра гелия устойчивы). Количественная же теория a-распада была создана лишь в 1980-х, в ее разработке принимали участие и отечественные физики,в их числе Лев Давидович Ландау, Аркадий Бейнусович Мигдал (1911–1991), заведующий кафедрой ядерной физики Воронежского университета Станислав Георгиевич Кадменский с сотрудниками.
Вылет из ядра a-частицы приводит к ядру другого химического элемента, который смещен в периодической таблице на две клетки влево. В качестве примера можно привести превращения семи изотопов полония (заряд ядра 84) в разные изотопы свинца (заряд ядра 82): 218Po ® 214Pb, 214Po ® 210Pb, 210Po ® 206Pb, 211Po ® 207Pb, 215Po ® 211Pb, 212Po ® 208Pb, 216Po ® 212Pb. Изотопы свинца 206Pb 207Pb и 208Pb стабильны, остальные радиоактивны.

2.3. Бета-распад.

Бета-распад наблюдается как у тяжелых, так и у легких ядер , например, у трития. Эти легкие частицы (быстрые электроны) обладают более высокой проникающей способностью. Так, в воздухе b-частицы могут пролететь несколько десятков сантиметров, в жидких и твердых веществах – от долей миллиметра до примерно 1 см. В отличие от a-частиц , энергетический спектр b-лучей не дискретный. Энергия вылетающих из ядра электронов может меняться почти от нуля до некоторого максимального значения, характерного для данного радионуклида. Обычно средняя энергия b-частиц намного меньше, чем у a-частиц; например, энергия b-излучения 228Ra составляет 0,04 МэВ. Но бывают и исключения; так b-излучение короткоживущего нуклида 11Ве несет энергию 11,5 МэВ. Долго было неясно, каким образом из одинаковых атомов одного и того же элемента вылетают частицы с разной скоростью. Когда же стало известно понятно строение атома и атомного ядра, появилась новая загадка: откуда вообще берутся вылетающие из ядра b-частицы – ведь в ядре никаких электронов нет. После того как в 1932 английский физик Джеймс Чедвиком открыл нейтрон , отечественные физики Дмитрий Дмитриевич Иваненко (1904–1994) и Игорь Евгеньевич Тамм и независимо немецкий физик Вернер Гейзенберг предположили, что атомные ядра состоят из протонов и нейтронов. В таком случае b-частицы должны образоваться в результате внутриядерного процесса превращения нейтрона в протон и электрон: n ® p + e. Масса нейтрона немного превышает суммарную массу протона и электрона, избыток массы, в соответствии с формулой Эйнштейна E = mc2, дает кинетическую энергию вылетающего из ядра электрона, поэтому b-распад наблюдается, в основном, у ядер с избыточным числом нейтронов. Например, нуклид 226Ra – a-излучатель, а все более тяжелые изотопы радия (227Ra, 228Ra, 229Ra и 230Ra) – b-излучатели.
Оставалось выяснить, почему b-частицы, в отличие от a-частиц, имеют сплошной спектр энергии, это означало, что одни из них обладают очень малой энергией, а другие – очень большой (и при этом движутся со скоростью, близкую к скорости света). Более того, суммарная энергия всех этих электронов (она была измерена с помощью калориметра) оказалась меньше, чем разность энергии исходного ядра и продукта его распада. Снова физики с толкнулись с «нарушением» закона сохранения энергии: часть энергии исходного ядра непонятно куда исчезала. Незыблемый физический закон «спас» в 1931 швейцарский физик Вольфганг Паули, который предположил, что при b-распаде из ядра вылетают две частицы: электрон и гипотетическая нейтральная частица – нейтрино с почти нулевой массой, которая и уносит избыток энергии. Непрерывный спектр b-излучения объясняется распределением энергии между электронами и этой частицей. Нейтрино (как потом оказалось, при b-распаде образуется так называемое электронное антинейтрино) очень слабо взаимодействует с веществом (например, легко пронзает по диаметру земной шар и даже огромную звезду) и потому долго не обнаруживалось – экспериментально свободные нейтрино были зарегистрированы только в 1956 г. Таким образом , уточненная схема бета-распада такова: n ® p + . Количественную теорию b-распада на основе представлений Паули о нейтрино разработал в 1933 итальянский физик Энрико Ферми, он же предложил название нейтрино (по-итальянски «нейтрончик»).
Превращение нейтрона в протон при b-распаде практически не изменяет массу нуклида, но увеличивает заряд ядра на единицу. Следовательно, образуется новый элемент , смещенный в периодической таблице на одну клетку вправо, например: ® , ® , ® и т.д. (одновременно из ядра вылетают электрон и антинейтрино). (4, 72)

2.4. Другие типы радиоактивного излучения.

Помимо альфа- и бета-распадов, известны и другие типы самопроизвольных радиоактивных превращений. В 1938 американский физик Луис Уолтер Альварес открыл третий тип радиоактивного превращения – электронный захват (К-захват). В этом случае ядро захватывает электрон с ближайшей к нему энергетической оболочки (К-оболочки). При взаимодействии электрона с протоном образуется нейтрон, а из ядра вылетает нейтрино, уносящее избыток энергии. Превращение протона в нейтрон не изменяет массу нуклида, но уменьшает заряд ядра на единицу. Следовательно, образуется новый элемент, находящийся в периодической таблице на одну клетку левее, например, из получается стабильный нуклид (именно на этом примере Альварес открыл этот тип радиоактивности).

При К-захвате в электронной оболочке атома на место исчезнувшего электрона «спускается» электрон с более высокого энергетического уровня, излишек энергии либо выделяется в виде рентгеновского излучения, либо расходуется на вылет из атома более слабо связанных одного или нескольких электронов – так называемых оже-электронов, по имени французского физика Пьера Оже (1899–1993), открывшего этот эффект в 1923 (для выбивания внутренних электронов он использовал ионизирующее излучение).


В 1940 Георгий Николаевич Флеров (1913–1990) и Константин Антонович Петржак (1907–1998) на примере урана открыли самопроизвольное (спонтанное) деление, при котором нестабильное ядро распадается на два более легких ядра, массы которых различаются не очень сильно, например: ® + + 2n. Этот тип распада наблюдается только у урана и более тяжелых элементов – всего более чем у 50 нуклидов. В случае урана спонтанное деление происходит очень медленно: среднее время жизни атома 238U составляет 6,5 миллиарда лет. В 1938 немецкий физик и химик Отто Ган, австрийский радиохимик и физик Лизе Мейтнер (в ее честь назван элемент Mt – мейтнерий) и немецкий физикохимик Фриц Штрассман (1902–1980) обнаружили, что при бомбардировке нейтронами ядра урана делятся на осколки, причем вылетевшие из ядер нейтроны способны вызвать деление соседних ядер урана , что приводит к цепной реакции). Этот процесс сопровождается выделением огромной (по сравнению с химическими реакциями) энергии, что привело к созданию ядерного оружия и строительству АЭС.

2.4.2. Открытие позитронного распада.

В 1934 дочь Марии Кюри Ирэн Жолио-Кюри и ее муж Фредерик Жолио-Кюри открыли позитронный распад. В этом процессе один из протонов ядра превращается в нейтрон и антиэлектрон (позитрон) – частицу с той же массой, но положительно заряженную; одновременно из ядра вылетает нейтрино: p ® n + e+ + 238. Масса ядра при этом не изменяется, а смещение происходит, отличие от b–-распада, влево, b+-распад характерен для ядер с избытком протонов (так называемые нейтронодефицитные ядра). Так, тяжелые изотопы кислорода 19О, 20О и 21О b–-активны, а его легкие изотопы 14О и 15О b+-активны, например: 14O ® 14N + e+ + 238. Как античастицы, позитроны сразу же уничтожаются (аннигилируют) при встрече с электронами с образованием двух g-квантов. Позитронный распад часто конкурирует с К-захватом.

В 1982 была открыта протонная радиоактивность: испускание ядром протона (это возможно лишь для некоторых искусственно полученных ядер, обладающих избыточной энергией). В 1960 физико-химик Виталий Иосифович Гольданский (1923–2001) теоретически предсказал двухпротонную радиоактивность: выбрасывание ядром двух протонов со спаренными спинами. Впервые она наблюдалась в 1970. Очень редко наблюдается и двухнейтронная радиоактивность (обнаружена в 1979).

В 1984 была открыта кластерная радиоактивность (от англ. cluster – гроздь, рой). При этом, в отличие от спонтанного деления, ядро распадается на осколки с сильно отличающимися массами, например, из тяжелого ядра вылетают ядра с массами от 14 до 34. Кластерный распад , и это в течение длительного времени затрудняло его обнаружение.

Некоторые ядра способны распадаться по разным направлениям. Например, 221Rn на 80% распадается с испусканием b-частиц и на 20% – a-частиц, многие изотопы редкоземельных элементов (137Pr, 141Nd, 141Pm, 142Sm и др.) распадаются либо путем электронного захвата, либо с испусканием позитрона. Различные виды радиоактивных излучений часто (но не всегда) сопровождаются g-излучением. Происходит это потому, что образующееся ядро может обладать избыточной энергией, от которой оно освобождается путем испускания гамма-квантов. Энергия g-излучения лежит в широких пределах, так, при распаде 226Ra она равна 0,186 МэВ, а при распаде 11Ве достигает 8 МэВ.

ВЫВОДЫ

... Выводы по сделанной работе...

СПИСОК ЛИТЕРАТУРЫ

1. Кадменский С.Г. Радиоактивность атомных ядер: история, результаты, новейшие достижения. Соросовский образовательный журнал , 1999, № 11.

2. Кудрявцев Л.С. История физики . Москва: Просвещение, 1956. 196 стр.

3. Радиоактивность [просмотрено 20.04.2010]

Доступно по: http://www.krugosvet.ru/enc/RADIOAKTIVNOST.html

4. Содди Ф. История атомной энергии . Москва: Атомиздат, 1979. 420 стр.

5. Старосельская-Никитина О.А. История радиоактивности и возникновения ядерной физики . Москва: изд-во АН СССР, 1963. 202 стр.

ПРИЛОЖЕНИЕ


Приложение 1. Портет Марии Складовской-Кюри.

Приложение 2. Портет Джорджа Гамова.


Приложение 3. Портет Джорджа Кэйдвика.


Приложение 4. Схема радиоактивного распада.

Увидев знак, предупреждающий о повышенной радиоактивности, человек старается поскорее покинуть опасное место. Случившееся в Чернобыле, Хиросиме и Нагасаки, научило людей остерегаться радиации. И не зря. После произошедших трагедий человечество столкнулось с серьезными проблемами в состоянии здоровья, которые до сих пор дают о себе знать. Радиация губительно влияет на организм, иногда приводя к смерти. Поэтому важно знать о ее действии, свойствах и допустимых дозах.

Что такое радиация?

Человек сталкивается с радиацией на протяжении всей жизни. Его организм, в первую очередь, подвержен естественной радиоактивности, которая наблюдается в природных процессах. Радиоактивностью называют такие явления в природе, при которых ядра атомов распадаются произвольно, что становится причиной возникновения излучений. Обладая выраженной энергией, эти излучения характеризуются тем, что способны ионизировать среду, в которой распространяются. Ионизация приводит к изменениям физических и химических свойств вещества. Такая способность несет поражающее влияние на живой организм, так как в биологических тканях нарушается жизнедеятельность.

Если ионизирующая способность в излучении высока, то она проникает в организм меньше. Если же ионизация обладает низким уровнем, она способна проникать более глубоко. Это становится важным, когда речь заходит о радиации, и ее влиянии на человека.

Радиоактивное действие на человека проводится внешним и внутренним способами. Вещества, которые находятся вне границ организма, создают внешнее облучение. Если же организм получает радиоактивные элементы, которые проникли внутрь вместе с воздухом, пищей, водой, так возникает облучение внутреннее. Высокое проникающее свойство излучения влияет более мощно при внешнем воздействии. Внутреннее влияние усугубляется, если излучению характерна высокая ионизация.

Облучение, которое изнутри получает организм, считается более опасным, так как радиация влияет на ткани и органы, которые ничем не защищены. Этот процесс происходит на молекулярном, клеточном уровне. Защитным барьером при внешнем облучении служит кожа, одежда, защитные средства, стены помещений.

Радиоактивные излучения разделяются на несколько видов, которые отличаются свойствами и влиянием на человека.

Дозы и источники радиоактивного излучения

Излучение постоянно исходит от естественных источников. Такими источниками внешнего облучения являются:

  • космические излучения,
  • солнечная радиация,
  • излучения горных пород,
  • излучения воздуха.

Небольшой дозой радиации обладают даже стройматериалы, которые используются в постройке зданий.

Внутреннее влияние радиации несут газы, поступающие из недр земли, радиоактивный калий, торий, уран, радий рубидий, являющиеся составляющими воды, растений и пищи. Любые эти виды радиоактивного воздействия не приносят вреда, когда излучение идет в малых количествах.

Существует допустимая норма радиации для человеческого организма. Безопасной считается доза до 0,3-0,5 мкЗв в час. Предельно допустимым является излучение в 10 мкЗв в час, если оно воздействует на организм не долго. Уже при мощности в 50 мЗв в год облучение приводит к онкологиям. Смертельная доза для человека – 10 Зв в год. Летальный исход случается через несколько недель.

Человеческая деятельность приводит к тому, что радиационное воздействие увеличивается, выражаясь в загрязнениях окружающей среды. В основном это происходит из таких источников:

  • радиоактивные реакторы,
  • урановая индустрия,
  • радиохимическое производство,
  • переработка и захоронение отходов с радиоактивной способностью,
  • радионуклиды в области народного хозяйства.

Радиация и ее влияние на человека может иметь и положительный опыт. Например, радиационное воздействие используется в медицине, к тому же, достаточно широко. Среди такого применения известны следующие способы проведения диагностики:

  • рентгенография,
  • флюорография,
  • компьютерная томография.

Облучение при томографии интенсивнее. Но и результат диагностирования в данном случае выше.

Кроме того, радиация в медицине применяется в таких сферах:

  • Радиотерапия. С ее помощью проводится лечение онкологических заболеваний. Правильное облучение способно убивать опухолевые образования.
  • Радиохирургия. Здесь используется гамма-нож, который не приводит к разрезам на коже. Особенно интенсивно его употребляют в развитых странах.

Грамотный подход к использованию радиоактивности служит на благо человечеству. Тогда, как чрезмерная промышленная деятельность загрязняет природу, что приводит к различным проблемам со здоровьем.

Влияние радиации на человека

Радиация и ее влияние на человека может вызывать серьезные нарушения в здоровье. Поражение касается не только организма того, кто подвергся облучению, но и следующих поколений, так как радиация влияет на генетический аппарат. Поэтому радиоактивное влияние имеет два эффекта:

  • Соматический – возникают такие заболевания, как лейкозы, онкологические образования органов, локальные лучевые поражения и лучевая болезнь.
  • Генетический – приводит к генным мутациям и изменениям структуры хромосом.

Облучение хронического характера несет меньшую нагрузку на организм, чем разовое в той же дозе, ведь успевают происходить восстановительные процессы. Скапливание радионуклидов в организме происходит неравномерно. Более всего страдают дыхательные и пищеварительные органы, через которые в организм проникают радионуклиды, печень и щитовидная железа. Среди онкологий, вызванных радиацией, наиболее распространены рак щитовидки и молочной железы.

Лучевой лейкоз, то есть рак крови, может обнаружиться по прошествии четырех-десяти лет после облучения. Он особо опасен для тех, кто еще не достиг пятнадцатилетнего возраста. То, что радиация может приводить к этой болезни, свидетельствует ее рост у жителей Хиросимы и Нагасаки. Кроме того, было подмечено, что смертность среди рентгенологов увеличена именно по причине лейкоза.

Облучение радиацией также чревато онкологией легких. В частности, диагноз распространен среди шахтеров, работающих на урановых рудниках.

Самым известным последствием радиационного действия является лучевая болезнь. Ее провоцируют как разовые облучения, так и хронические. Большие дозы могут привести к летальному исходу.

Мутации, которые проходят в генетическом аппарате в следствие облучения, на данный момент изучены не достаточно. Это обусловлено тем, что они способны проявляться через многие годы в разных поколениях. Тогда становится трудно доказать, по какой именно причине произошла та или иная мутация.

Иногда они проявляются сразу. Такие мутации называют доминантными. Существуют рецессивные мутации, дающие знать о себе через поколения. Хотя они могут не выявиться в новых поколениях вообще. Мутации выявляются физическими или психическими нарушениями в здоровье потомков. Для этого поврежденному гену нужно соединиться с геном, обладающим одинаковым с ним повреждением.

При внешних облучениях появляются ожоги кожных и слизистых покровов, разные по степеням тяжести.

Свободные радикалы и последствия их действия

Когда ионизирующая способность радиоактивного излучения интенсивна, это приводит к образованию активных молекул в живых клетках. Такие молекулы и есть свободными радикалами. Они повреждают и приводят к гибели живые клетки.

Их агрессивное воздействие направлено на жизненно важные функции организма. В первую очередь страдают клетки желудочно-кишечной и кроветворной систем и половые клетки. В данном случае возникают определенные симптомы: тошнота, рвота, повышенная температура, диарея, уменьшение клеток крови.

Клетки, которые делятся не так быстро, как вышеперечисленные, переживают изменения в сторону дистрофии. Если при облучении пострадали глаза, это может вызвать лучевую катаракту. Склероз сосудов и плохой иммунитет – также последствия работы свободных радикалов.

В борьбе со свободными радикалами организм сам запускает регенерацию поврежденных клеток. Но когда облучение сильное, он становится не способным побороть вредоносное действие. Вид радиации, ее интенсивность и индивидуальная восприимчивость человека играют в этом главную роль.

Заключение

Радиоактивное излучение в природе является нормальным явлением. Естественное облучение проходит в минимальных дозах, и человек переживает его на протяжении всей жизни. Ведь оно исходит от таких природных носителей, как солнце и воздух. Но там, где человек переходит предельную черту, загрязняя окружающую среду разными видами производства, радиация становится очень опасной для здоровья и жизни. Ее влияние при превышении допустимых доз способно наносить вред не только организму того, кто оказался под ее воздействием, но и потомкам такого человека. Влияя на генетику, радиация способна повреждать психические и физические способности новых поколений.

Кроме негативного радиационного воздействия, человек сталкивается с его положительной стороной, когда речь заходит о медицинских обследованиях и процедурах. Обернуть радиацию на благо смогли ученые, употребив ее в медицине.


Слово «радиация» давно закрепилось в сознании многих людей как нечто чрезвычайно опасное, несущее хаос и разрушения: невидимая, не имеющая ни вкуса, ни запаха, и потому еще более пугающая. Учитывая, к каким последствиям может привести, например, авария на АЭС или взрыв атомной бомбы, с этим мнением сложно не согласиться - ведь высокая доза радиации действительно смертельно опасна.

В повседневной жизни мы постоянно с сталкиваемся с радиацией в малых дозах. И это, в общем-то, не вызывает ни у кого беспокойства и страха.

Сканеры в аэропортах

За последние несколько лет многие крупные аэропорты обзавелись сканерами для досмотра. От обычных металлодетекторных рамок они отличаются тем, что «создают» на экране полное изображение человека, используя технологию обратно-рассеянного излучения Backscatter X-ray. При этом лучи не проходят насквозь - они отражаются. В результате пассажир, проходящий досмотр, получает малую дозу рентгеновского излучения. В ходе сканирования разные по плотности предметы окрашиваются на экране в разные цвета. Например, металлические вещи отобразятся черным пятном.

Есть и еще один вид сканера, в нем используются волны миллиметрового диапазона. Он представляет собой прозрачную капсулу с вращающимися антеннами.

В отличие от металлодетекторных рамок такие устройства считаются более эффективными в поиске запрещенных к провозу вещей. Производители сканеров утверждают, что они абсолютно безопасны для здоровья пассажиров. Однако масштабных исследований на этот счет в мире до сих пор не проводилось. Поэтому мнения специалистов разделились: одни поддерживают производителей, другие полагают, что определенный вред подобные устройства все же наносят.

Например, биохимик из Калифорнийского университета Дэвид Агард считает, что рентгеновский сканер все же вреден. По мнению ученого, человек, проходящий досмотр на этом устройстве, получает в 20 раз больше облучения, чем заявлено производителями.

Рентгеновский снимок

Еще один источник так называемой «бытовой радиации» - рентгеновское обследование. Например, один снимок зуба выдает от 1 до 5 мкЗв (микрозиверт - единица измерения эффективной дозы ионизирующего излучения). А снимок грудной клетки - от 30?300 мкЗв. Смертельной считается доза радиации, равная примерно 1 зиверту.

Согласно исследованию врачей, 27 процентов всего излучения, которое человек получает в течение жизни, приходится именно на медицинские обследования.

Сигареты

В 2008 году в мире активно заговорили о том, что помимо прочих «вредностей» в табаке содержится еще и токсический агент полоний-210.

Если верить данным Всемирной организации здравоохранения, токсические свойства этого радиоактивного элемента гораздо выше, чем у любого известного цианида. По мнению руководства компании British American Tobacco, умеренно курящий человек (не более 1 пачки в день) получает лишь 1/5 часть суточной дозы изотопа.

Бананы и другая еда

Некоторые натуральные продукты содержат природный радиоактивный изотоп углерод-14, а также калий-40. К ним можно отнести картофель, бобы, семечки подсолнечника, орехи, а еще - бананы.

Кстати, калий-40, если верить ученым, имеет самый большой период полураспада - более миллиарда лет. Еще один интересный момент: в «теле» среднего по величине банана каждую секунду происходит порядка 15 актов распада калия-40. В связи с этим в научном мире даже придумали шуточную величину под названием «банановый эквивалент». Так стали называть дозу облучения, сравнимую со съедением одного банана.

Стоит отметить, что никакой опасности для здоровья человека бананы, несмотря на содержание калия-40, не несут. Кстати, ежегодно с пищей и водой человек получает дозу радиации в размере порядка 400 мкЗв.

Авиапутешествия и космическая радиация

Излучение из космоса частично задерживается атмосферой Земли. Чем дальше в небо, тем выше уровень радиации. Именно поэтому при путешествии на самолете человек получает немного повышенную дозу. В среднем она составляет 5 мкЗв за один час полета. При этом летать больше 72 часов в месяц специалисты не рекомендуют.

Собственно, одним из главных источников является Земля. Излучение происходит за счет содержащихся в почве радиоактивных веществ, в частности, урана и тория. Средний радиационный фон составляет порядка 480 мкЗв в год. При этом в некоторых регионах, например, в индийском штате Керала, он значительно выше из-за внушительного содержания тория в грунте.

А как же мобильники и WI-FI-маршрутизаторы?

Вопреки распространенному мнению, от этих устройств не исходит «радиационной угрозы». Чего нельзя сказать о телевизорах с электронно-лучевой трубкой и таких же компьютерных мониторах (да, они до сих пор встречаются). Но и в этом случая доза излучения ничтожна. За год от такого устройства можно получить лишь до 10 мкЗв.

Доза радиации, получаемая человеком из естественных и «бытовых» источников, считается безопасной для организма. Специалисты полагают, что накапливаемое в течение жизни облучение не должно превышать 700 000 мкЗв.

Радиация является постоянным спутником жизни человека. Мы живем в мире, в котором радиация присутствует повсюду. Свет и тепло ядерных реакций на Солнце являются необходимыми условиями нашего существования. Радиоактивные вещества естественного происхождения присутствуют в окружающей среде. Наше тело содержит радиоактивные изотопы 14 C, 40 K, 210 Po. Зарождение жизни на Земле и её последующая эволюция протекали в условиях постоянного воздействия радиации.

Долгоживущие радиоактивные изотопы

В природе существует ~ 45 радиоактивных изотопов, период полураспада которых сопоставим или больше возраста Вселенной (13.7·10 9 лет). В таблице 16.1 перечислены изотопы, период полураспада которых превышает 10 9 лет. Большинство долгоживущих радиоактивных изотопов в результате нескольких последовательных распадов превращается в стабильные изотопы.

Явление радиоактивности широко используется в науке, технике, медицине, промышленности. Рентгеновские лучи и радиоактивные изотопы используются в медицинских исследованиях. Однако сразу же стало ясно, что радиация является потенциально опасным источником для живых организмов. В больших объёмах искусственные радионуклиды образуются в качестве побочного продукта на предприятиях оборонной промышленности и атомной энергетики. Попадая в окружающую среду, они оказывают негативное воздействие на живые организмы. Для правильной оценки радиационной опасности необходимо чёткое представление о масштабах загрязнения окружающей среды, о реальных механизмах действия радиации, последствиях и существующих мерах защиты.

Радиация − обобщённое понятие. Оно включает различные виды излучений, часть которых встречается природе, другие получаются искусственным путем. Прежде всего, следует различать корпускулярное излучение состоящее из частиц с массой отличной от нуля, и электромагнитное излучение. Корпускулярное излучение может состоять как из заряженных, так и из нейтральных частиц.

  • Альфа-излучение − представляет собой ядра гелия, которые испускаются при радиоактивном распаде элементов тяжёлее свинца или образуются в ядерных реакциях.
  • Бета-излучение − это электроны или позитроны, которые образуются при бета-распаде различных элементов от самых лёгких (нейтрон) до самых тяжёлых.
  • Космическое излучение . Приходит на Землю из космоса. В его состав входят преимущественно протоны и ядра гелия. Более тяжёлые элементы составляют менее 1%. Проникая вглубь атмосферы, космическое излучение взаимодействует с ядрами, входящими состав атмосферы, и образует потоки вторичных частиц (мезоны, гамма-кванты, нейтроны и др.).
  • Нейтроны . Образуются в ядерных реакциях (в ядерных реакторах и в других промышленных и исследовательских установках, а также при ядерных взрывах). Продукты деления. Содержатся в радиоактивных отходах переработанного топлива ядерных реакторов.
  • Протоны, ионы . В основном получаются на ускорителях.

Источники радиоактивности в нашей жизни. Искусственная и естественная радиоактивность.

Е сли мы слышим слово «радиация», то нам сразу же представляется что-то смертельно опасное для жизни, будь-то ядерная бомба, авария на атомной электростанции или ядерные отходы. И, конечно же, такая реакция небезосновательна, однако это понятие гораздо более емкое. Ведь радиация окружает нас всегда и везде, более того, без определенной дозы облучения мы не смогли бы существовать, а источники радиации могут быть самые различные и в подавляющем большинстве естественного происхождения. На данный момент на нашей планете существуют естественные и искусственные источники радиации, и на этом мы остановимся подробней.

Естественные источники радиации

Радиация, в данном конкретном случае, это поток заряженных элементарных частиц, которые при прохождении через вещество, производят ионизацию в нем. Радиация это неотъемлемая часть Вселенной и она встречается абсолютно везде на нашей планете, и тем более в Космосе. Радиоактивным излучением обладает все вокруг нас, камни, почва, вода, растения и животные, однако радиоактивность в различных уголках Земли не одинакова, и может колебаться в промежутках от 5 до 20 мкР/ч. Хотя данные показатели и считаются, с медицинской точки зрения не опасными. Однако следует понимать, что их воздействие на организм носит существенный характер, и вполне может служить причиной многих заболеваний (к примеру, рака) или мутаций.

Оградить себя от естественной (природной) радиации мы не можем, однако мы можем оградить себя от пиковых облучений естественной радиацией, которые могут превышать допустимые нормы.

С уществуют основные три источника радиоактивного излучения естественного происхождения, и первый из них это космическая и солнечная радиация.

Солнечная и космическая радиация представляет собой гигантский поток заряженных частиц с огромной энергией, которые бомбардируют Землю в период солнечной активности (выбросе коронарного вещества). Такой поток частиц в местах его попадания уничтожил бы большую часть жизненных форм на нашей планете, однако у Земли есть защита и достаточно эффективная, это ее магнитное поле. Подавляющую часть заряженных частиц из космоса магнитное поле земли отводит от поверхности, однако при особенно сильном солнечном шторме часть солнечной радиации попадает на нас и все вокруг. И интенсивность этого попадания зависит очень от широты и высоты нахождения над уровнем моря. Чем мы выше, тем сильнее воздействие на нас космического излучения, причем на экваторе излучение проникает сильнее, чем на полюсах. Это связано с формой и характеристиками магнитного поля Земли.

И менно поэтому наблюдаются случаи бесплодия у стюардесс, которые проводят много времени на высоте около 10 километров над землей. Хотя и пассажиры тоже подвергаются повышенному воздействию радиации из космоса, однако в разовых случаях оно не представляет опасности.

В торой источник природной радиации, это излучение земной коры . Как и любой макрокосмический объект во Вселенной, наша планета также радиоактивна. Под ее недрами и на ее поверхности хранится огромное количество радиоактивных материалов, свидетельствующих о бурном прошлом нашей Земли. Это и различные каменные породы, особенно твердые (гранит, базальт и прочие), а также глиноземы, залежи урановых руд, глубинные источники воды и многое другое. Такие природные источники радиации представляют опасность лишь при непосредственном нахождении возле них, особенно в местах их скопления и на месторождениях.

П онятно, что использование и добыча таких материалов приводит к их распространению. И поэтому мы можем столкнуться с ними и в наших домах в виде стройматериалов, в воздухе при сжигании каменного угля в печи теплоэлектростанции, к примеру, в виде продуктов питания с участков с повышенным фоном, в виде воды из крана, в случаях, когда используется для водоснабжения артезианская вода, и многое другое.

В зависимости от месторождения глины или камня, соответствующие стройматериалы могут превысить радиоактивный фон в помещениях в несколько раз, от аналогичных показаний на улице. И чтобы понимать какое жилье вам выбрать, или в каких помещениях вы проживаете, стоит измерить уровень радиации при помощи специальных устройств – дозиметров . К счастью, на сегодняшний день существуют не только и дорогостоящие устройства такого типа, но и и бюджетные, которые позволяют определить уровень радиации с достаточной степенью точности.

Е ще один существенный источник природной радиации в нашей жизни это радон. Радон – это инертный газ, который может являться источником радиации и который в 7,5 раз тяжелее воздуха. Этот газ часто накапливается под землей и попадает в наши дома при добыче полезных ископаемых, в стройматериалах, или использовании при водоснабжении наших домов и квартир артезианских глубинных источников, также он может просачиваться через незначительные трещины в земной каре и существенно увеличивать радиационный фон в той или иной местности.

Радон может накапливаться в подвалах зданий, а иногда и на первых этажах, а также в низинах рельефа местности. Чтобы снизить уровень радона в вашем жилище, настоятельно рекомендуется постоянно проветривать помещение.

Искусственная радиоактивность

П осле некоторого постижения тайны строения атома, человечество стало широко использовать эти знания, что привело к появлению на нашей планете еще одного источника радиоактивного излучения, а именно рукотворного или искусственного . К таким источникам может относиться разработка и применение ядерного оружия, атомные электростанции, радиоактивные отходы атомных станций, некоторое медицинское оборудование, некоторые радиоактивные материалы и предметы, вывезенные из зоны заражения Чернобыльской АЭС и многое другое.

У ровень такой радиации может и не превышать существующий в данной местности природный уровень, а может превышать его в сотни, и даже в десятки тысяч раз, что может привести к неминуемой смерти.

О пасный уровень радиации может попадать в наш организм, от каких угодно предметов или местности, причем они не будут никак отличаться от аналогичных вещей, с нормальным уровнем. Чтобы точно знать, с чем вы сталкиваетесь в своей жизни, вам стоит , его еще называют радиометр. Такое устройство в бытовом исполнении не занимает места больше, чем сигаретная пачка и весит не более 100 грамм. Оно очень просто в эксплуатации и позволяет защитить свое здоровье и здоровье своих близких при покупке стройматериалов, различных предметов, включая предметы старины, продуктов питания неизвестного происхождения и во многих других случаях. Такое знание убережет вас от самых серьезных последствий!